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EFFECTIVENESS OF ACIDIZING OF THE WELLBORE ZONE TAKING INTO ACCOUNT

THE CAPILLARY LOCKING OF FORMATION WATER

UDC 532.546N. T. Danaev,1 A. A. Kashevarov,2

and V. I. Pen’kovskii2

The results of calculations of immiscible fluid flow to an operating well are compared for various
formation parameters and states of the wellbore zone. Steady-state and unsteady filtration regimes
are considered. The calculations show that acidizing of the wellbore zone increases the well flow rate.
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When a HCl/HF mixture is injected into a formation, it reacts with the SiO2 sandy fraction. As a result,
the pore radii increase, leading to an increase in the porosity m and permeability (permeability coefficient) of the
formation k (kf ).

As shown in [1], the linearized model problem of an increase in the radius of an individual capillary with an
aggressive fluid flowing inside it and reacting with the inner surface reduces to solving the differential equations

∂c1
∂x1

= −c1 + r1 + 1,
∂r1
∂x2

= a1(1− c1) (1)

subject to the boundary conditions

x1 = 0, x2 > 0: c1 = 0; x2 = 0, x1 > 0: r1 = 0. (2)

Here x1 = ax/R0 and x2 = 2At/r0 − ax/R0 are the dimensionless characteristic variables, x is the physical
coordinate, t is time, A is the rate constant of the second-order chemical reaction, a1 = C0/(2ρ1), C0 is the initial
concentration of the reactive fluid, R0 is the initial radius of the capillary, ρ1 is the density of the reactive component
of the capillary surface, r1 and c1 are the small relative variations in the radius and fluid concentration, respectively,
a1 = 2A/(πv0), and v0 is the fluid flow velocity.

The Goursat problem (1) and (2) is easy to solve using a Laplace transform. The solution has the form

c1(x1, x2) = 1− e−x1 J0(2
√
a1x1x2), r1(x1, x2) = e−x1

√
a1x2/x1 J1(2

√
a1x1x2),

where J0 and J1 are zero- and first-order Bessel functions, respectively. Since the dimensionless parameter a1 is small
(on the order of 10−3–10−2), in calculations of, e.g., the relative capillary radius, it suffices to use an asymptotic
expansion of the above relation for the function r1. As a result, we have

R/R0 = 1 + a0(l − x) e−λx,

where λ = 2A/(R0v0), l = v0t is the depth of penetration of the solution, and a0 = 2Aa1/(R0v0) is a small
parameter.

Let the size distribution of conditional (hydraulic) pores ρ with density F (ρ) in the porous medium obey
the lognormal law

F (ρ) = n0 exp [− ln2(ρ/ρ0)/(2σ2)],
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where ρ0 is the distribution mode of capillary radii and n0 is a parameter related to the dispersion and number of
capillaries. Then, assuming that the dispersion and total number of capillaries in unit cross section of a rock sample
are constant in the case of axisymmetric penetration of the acid solution into the formation, for changed filtration
characteristics, we can write the following relations:
— for the porosity,

m(r) = m0[1 + 2a0(R∗ − r) e−λr]; (3)

— for the permeability,
k(r) = k0[1 + 4a0(R∗ − r) e−λr]; (4)

— for the capillary pressure,
pc(s) = p0

cϕ(s)[1− a0(R∗ − r) e−λr]. (5)

Here r is the current radial coordinate and R∗ is the radius of the treated zone. Formulas (3)–(5) are obtained by
expansion of the corresponding moments of the distribution function in the small parameter a0 with retention of the
first two terms. The indicated parameter and the constant λ are related to the parameters of the reaction-kinetics
equations and the treatment method: the time of injection of the reagent T , the reagent volume Q∗ and con-
centration C0, and the formation thickness M . Obviously, for the radius R∗ of the treated zone, the relation
R∗ =

√
Q∗/(πMm0) holds. The above-mentioned constants are as follows: λ ∼ (1 − 5)m−1 and a0 ∼

(10−2–10−1)m−1.

The initial formation parameters — the porosity m0, permeability k0, and characteristic capillary pres-
sure p0

c — are constant for r > R∗. The dimensionless function ϕ(s) included in Eq. (3) (an analog of the Leverette
function) can be specified as ϕ(s) =

√
s(æ− 1)/(æ− s) or ϕ(s) =

√
s/(1− s), where s is the oil saturation and the

parameter æ is usually in the range 1.1–1.3, depending on the physicochemical properties of the formation.
The system of equations commonly used in studies of immiscible fluid filtration is classified as a degenerating

elliptic-parabolic system [2]. From theoretical and applied viewpoints, in deriving the basic equations describing
the process of immiscible displacement, it is reasonable to take into account the compressibilities of the matrix and
moving phases. In this case, as will be seen from the following, the system of equations becomes simply parabolic.

We write the mass conservation laws for oil and water:
∂

∂t
(mρs) =

1
r

∂

∂r

(
rρf(s)kf

∂p

∂r

)
,

∂

∂t
(mρwsw) =

1
r

∂

∂r

(
rρwfw(sw)kfw

∂pw

∂r

)
. (6)

Here s and sw are the saturations, m is the formation porosity, ρ and ρw are the densities, p and pw are the
pressures, kf and kfw are the filtration coefficients, and f and fw are the phase permeabilities; the subscript “w”
refers to the water phase. According to the linear theory of elastic filtration [3], for s = 1, we have m ' m0(1+εmp)
and ρ ' ρ0(1 + ερp); similarly for sv = 1, m ' m0(1 + εmvpv) and ρv ' ρ0v(1 + ερvpv), where the quantities ε
with subscripts are experimentally determined small constants. Generally, for s 6= 0 and s 6= 1, the compression
coefficients are functions of the saturation s. As a first approximation, they can treated as certain weighted average
parameters. With accuracy up to the second order of smallness, we have the approximations

mρ ' m0ρ0(1 + βp), mρw ' m0ρw(1 + βwpw),

where β = εm + ερ and βw = εmw + ερw. Substituting these relations into Eq. (6) and dropping the terms ερp
and ερwpw, which are small compared to unity, we obtain the following equations of two-phase filtration taking into
account the formation piezoconductivity and the variation in the filtration characteristics in the wellbore zone:

m(r)
∂s

∂t
+ β

∂

∂t
(ps) =

1
r

∂

∂r

(
rf(s)

k

µ

∂p

∂r

)
,

m(r)
∂sw
∂t

+ βw
∂

∂t
(pwsw) =

1
r

∂

∂r

(
rf(sw)

k

µw

∂pw

∂r

)
, (7)

p = pw + p0
cψ(r)ϕ(s).

Let us estimate the effectiveness of acidizing the wellbore zone for steady-state filtration taking into account
the capillary locking of the water phase.

It is the case where capillary forces (p0
c 6= 0) play an important role in the filtration process and the water

phase is fixed because the pressure in it is constant: pw = pc = const and pc = p0−∆p (p0 is the formation pressure
and ∆p is the specified depression). The negative role of capillary forces is illustrated by a simple example. Let
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R be the well boundary on which the formation pressure p = p0 and the oil saturation s = s0 are conserved and the
water saturation sw = 1−s0 remains constant and equal to the initial water saturation of the field. In the case of no
capillary forces and, hence, no capillary locking, the filtration flow in the formation is homogeneous, the oil inflow
velocity is q0 = kff(s0)∆p/ ln (R/rb) (rb is the well radius), and the water inflow velocity is qw 6= 0. Conversely,
if capillary forces are taken into consideration, the equality of the water and oil pressures in the well implies that
s(0) = 0 and integrating the expression for the relative oil-inflow velocity

qc = rf(s)kfp
0
c

d(ϕ(s))
dr

over r from rb to R and over s from 0 to s0, we obtain

qc = I(s0)kfp
0
c/ ln (R/rb).

The water inflow is absent in this case. Thus, the degree of decrease in oil inflow is given by

η = qc/q0 = I(s0)/[ϕ(s0)f(s0)].

Here and above

I(s0) =

s0∫
0

f(s) dϕ(s),

and if the phase permeability is specified as f(s) = s3,5, this integral can be expressed in terms of elementary
functions.

For the fields of Kazakhstan, the oil saturation s0 is in the range 0.60–0.65. Simple calculations show that
η(0.6) = 0.446 and η(0.7) = 0.522. Thus, because of capillary locking, the oil inflow to the well decreases by a
factor of two. We note that the expression for the relative magnitude of the inflows η at p0− pc = p0

cϕ(s0) does not
include the range radius R and the determining factor is the initial oil saturation of the field s0.

Naturally, for acidizing with variation in the physicochemical properties of the formation at a distance
R∗ < R in the wellbore zone, the exponent η depends on the ratio of these quantities and the acidizing effectiveness
is estimated numerically.

For an axisymmetric model of two-phase filtration based on Eqs. (6), an algorithm for calculating unsteady
problems of mass transfer in the wellbore zone was developed. The model takes into account the compressibility of
the formation, capillary forces, and the spatial nonuniformity of the distribution of the hydrophysical characteristics
of the formation.

With allowance for the condition sw + s = 1 and the capillary jump pw = p + pc(sv), system (6) can
be converted to an equivalent system consisting, according to [2], of the parabolic equation for the water-phase
pressure pw

r
∂

∂t
m =

∂

∂r

(
r(kw(sw) + k(s))

∂pw

∂r
+ rk

∂pc

∂r

)
(rb < r < L) (8)

and the hyperbolic transfer equation for the water saturation (sw)

r
∂

∂t
(msw) =

∂

∂r

(
rkw

∂pw

∂r

)
, m = m0(r) + δpw, rb < r < L. (9)

The following boundary and initial conditions are specified:

pw

∣∣∣
r=rb

= p0
w, pw

∣∣∣
r=L

= p1
w, sw

∣∣∣
r=rb

= s0w, sw

∣∣∣
r=L

= s1w, pv

∣∣∣
t=0

= p0, sv

∣∣∣
t=0

= s0. (10)

This problem was solved using an iterative process, which can be written in differential form
∂

∂t
(rmn) =

∂

∂r

(
r(kw(sn−1

w ) + k(1− sn−1
w ))

∂pn
w

∂r

)
+ Fn−1,

∂

∂t
(rmnsn

w) =
∂

∂r

(
rkw(sn

w)
∂pn

w

∂r

)
, mn = m0(r) + δpn

w.

Here n is the iterative step number and Fn−1 =
∂

∂r

(
rk(1− sn−1

w )
∂pc(sn−1

w )
∂r

)
.

In the nth iterative step, the pressure in the water phase is found from the first equation and the water
saturation is determined from the second equation. If the conditions max

rb<r<L
|sn

w−sn−1
w | < ε1 and max

rb<r<L
|pn

w−pn−1
w |

< ε2 are satisfied, the iterative process is terminated.
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In numerical finite-difference calculations, we used conservative implicit difference schemes, which were solved
by a sweep method [4]. In each time layer, a difference solution was found using the iterative algorithm described
above. With a choice of rather small steps in time, this algorithm converges and allows the problem to be solved in
the general formulation.

In the case of a rigid filtration regime δ = 0, Eq. (8) implies that the total velocity

V = −
(
rkw(sw)

∂pw

∂r
+ rk(1− sw)

∂p

∂r

)
is a function of only time V = V (t), and in this case, the computational algorithm can be simplified [2]. The
approximate value of the total velocity V n in the nth iterative step is determined from the formula

V n = −
L∫

rb

r−1(kw(sn−1
w ) + k(1− sn−1

w ))−1 dr [p1
w − p0

w + Φ(s1w)− Φ(s0w)].

Here the function Φ is defined by the equality

Φ =

sw∫
0

k(1− s)
kw(s) + k(1− s)

∂pc(s)
∂s

ds.

If the dependence of the equation coefficients on the saturation has the form

kw(sw) = k0s
2
w, k(1− sw) = k0(1− sw)2, pc(sw) = p0

c

√
(1− sw)/sw (11)

the value of Φ can be computed explicitly.
Using the representation

rkw(sw)
∂pw

∂r
= − kw(sw)

kw(sw) + k(1− sw)
V − rkw(sw)k(1− sw)

kw(sw) + k(1− sw)
∂pc

∂r
,

we numerically solve the nonlinear parabolic equation

∂

∂t
(rmnsn

w) = − ∂

∂r

( kw(sn
w)

kw(sn
w) + k(1− sn

w)
V n +

rkw(sn
w)k(1− sn

w)
kw(sn

w) + k(1− sn
w)

∂pc(sn
w)

∂r

)
,

and determine the next iterative approximation for the water saturation.
The model was implemented numerically in C++. The program provides for information input in a con-

versational mode and a graphical representation of calculations. Using this program, one can solve the problem in
the axisymmetric and one-dimensional formulations with first- and second-kind conditions on the right boundary
(r = L). The hydrophysical characteristics of the formation can vary depending on the distance to the well and
are specified as piecewise constant functions. The local variation in the formation properties near the well due to
acidizing is specified according to formulas (3)–(5). The calculation results are displayed as tables or plots. After
data analysis and updating, the calculations can be continued using the obtained results as new initial data.

As is known [3], in immiscible filtration problems incorporating capillary forces, it is theoretically assumed
that the normal derivative of the saturation increases without bound as the coordinate approaches the radius of
the operating well. Therefore, in the numerical implementation of the problem, we used a nonuniform mesh with
refinement in the neighborhood of the well. The conservatism of the scheme allows a decrease in the effect of the
saturation approximation error in the wellbore zone.

The developed program was used to calculate the oil inflow to the
exhaust well with variation in the type of model and the acidizing of the wellbore zone. The equation

coefficients were specified as (11). The calculations were performed for the following data of the axisymmetric
problem.

The constant parameters of the problem were as follows: well radius rb = 0.1 m, porosity m = 0.15,
filtration coefficient k0 = 0.2 m/days, length of the region L = 30 m, initial water saturation sw = 0.4, ratio of
the water and oil viscosities µ0 = 0.2, decrease in the well head pressure compared to the formation head pressure
∆p = p1

w − p0
w = 20 m (p0

w = 0). In the calculations, the characteristic values of the capillary jump (p0
c) and the

formation compressibility factor (δ) were varied.
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Fig. 1. Pressure (a) and oil saturation (b) distributions (δ = 0.0001 and p0
c = 0.8) for t = 10 (1)

and 100 days (2).
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Fig. 2. Pressure distribution (δ = 0.005) for t = 0.5 (1), 10 (2), and
t = 100 days (3).

TABLE 1

t, day q/qw

(δ = 0.0001, p0
c = 0)

q/qw

(δ = 0.0001, p0
c = 0.8)

0.5 0.335/0.734 0.159/0.798
10 0.321/0.708 0.147/0.778
100 0.321/0.708 0.147/0.781
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TABLE 2

t, day q/qw

(p0
c = 0)

q/qw

(p0
c = 0.8)

q0/q0
w

(p0
c = 0)

q0/q0
w

(p0
c = 0.8)

0.5 0.417/0.914 0.234/0.974 1.245/1.245 1.472/1.221
10 0.399/0.881 0.218/0.946 1.243/1.244 1.483/1.216
100 0.398/0.883 0.218/0.950 1.243/1.244 1.483/1.216

TABLE 3

t, day q/qw

(δ = 0.005, p0
c = 0)

q/qw

(δ = 0.005, p0
c = 0.8)

0.5 0.566/0.993 0.317/1.096
10 0.389/0.730 0.186/0.808
100 0.389/0.730 0.186/0.808

Calculated production rates of the untreated well are given in Table 1, where the numerator corresponds to
the oil flow rate and the denominator to the water flow rate.

In the numerical modeling of the two-phase flow with well acidizing, the physical parameters of the formation
were δ = 0.0001, p0

c = 0, and p0
c = 0.8 and the parameters of the treated wellbore zone were a0 = 0.05, λ = 1,

and R∗ = 2 (Table 2). The production rate of the treated well increases irrespective of whether capillary forces are
taken into account (p0

c = 0.8) or not (p0
c = 0). The last two columns of Table 2 give the flow rate ratio for the cases

with and without acidizing (q0 refers to oil and q0w refers to water).
Figure 1 gives pressure and oil-saturation distributions for a weakly compressible formation without acidizing.

For times larger than 10 days, the oil saturations practically do not change.
We should particularly note the effect of the formation compressibility. Unlike in the rigid filtration regime,

the solutions of elastic problems depend substantially on the formation pressure dynamics. This can be clearly
seen in the case of no capillary jump. For a homogeneous water saturation of the formation at the initial time
s
∣∣∣
t=0

= s0 = const) and the boundary condition s
∣∣∣
r=L

= s0, the system of Buckley–Leverette equations (δ = 0)

has a solution in the form of the constant sw(r, t) = s0. However, for the elastic filtration regime, the solution has
an absolutely different form: the water saturation and oil saturation are nonmonotonic time-dependent functions.
The compressibility effect is also manifested in the presence of a capillary jump; it is especially strong for large
values of the compressibility factor (δ = 0.005), which can be due to the presence of a gas phase in the formation.
In this case, passage of the pressure release wave near the well sharply changes the oil saturation distributions, and
in addition, the pressure gradient near the well becomes high enough (Fig. 2). These features of the process may
be responsible for the higher values of oil inflow to the well at the initial time (Table 3) compared to the results
obtained for weakly compressible formations (δ = 0.0001) (see Table 1).

The calculation results lead to the following general conclusion. Acidizing of the wellbore zone of a producing
well can be an effective method for increasing the oil inflow. Naturally, the degree of effectiveness of this method
depends on the treatment technology used and the physicochemical parameters of the formation. For example,
from the results presented in Table 2, it is obvious that a decrease in the negative effect of capillary forces plays an
important role in increasing the oil inflow (by a factor of about 1.5).
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